SU-E-T-558: Assessing the Effect of Inter-Fractional Motion in Esophageal Sparing Plans.
نویسندگان
چکیده
PURPOSE To compare esophageal dose distributions in esophageal sparing IMRT plans with predicted dose distributions which include the effect of inter-fraction motion. METHODS Seven lung cancer patients were used, each with a standard and an esophageal sparing plan (74Gy, 2Gy fractions). The average max dose to esophagus was 8351cGy and 7758cGy for the standard and sparing plans, respectively. The average length of esophagus for which the total circumference was treated above 60Gy (LETT60) was 9.4cm in the standard plans and 5.8cm in the sparing plans. In order to simulate inter-fractional motion, a three-dimensional rigid shift was applied to the calculated dose field. A simulated course of treatment consisted of a single systematic shift applied throughout the treatment as well a random shift for each of the 37 fractions. Both systematic and random shifts were generated from Gaussian distributions of 3mm and 5mm standard deviation. Each treatment course was simulated 1000 times to obtain an expected distribution of the delivered dose. RESULTS Simulated treatment dose received by the esophagus was less than dose seen in the treatment plan. The average reduction in maximum esophageal dose for the standard plans was 234cGy and 386cGY for the 3mm and 5mm Gaussian distributions, respectively. The average reduction in LETT60 was 0.6cm and 1.7cm, for the 3mm and 5mm distributions respectively. For the esophageal sparing plans, the average reduction in maximum esophageal dose was 94cGy and 202cGy for 3mm and 5mm Gaussian distributions, respectively. The average change in LETT60 for the esophageal sparing plans was smaller, at 0.1cm (increase) and 0.6cm (reduction), for the 3mm and 5mm distributions, respectively. CONCLUSIONS Interfraction motion consistently reduced the maximum doses to the esophagus for both standard and esophageal sparing plans.
منابع مشابه
Comparison between field-in-field technique and the use of conventional wedges for treatment planning of esophageal cancer
Introduction: This study was conducted to evaluate and quantify the treatment planning performance of MLC-optimized field-in-field planning technique (FIF), also named forward IMRT, versus wedge-based three field (W3F) technique in terms of dosimetric and radiobiological parameters for esophageal carcinoma. Material and Methods: Twenty patients with esophag...
متن کاملRespiratory motion effect on tumor and normal tissue doses in patients with lung cancer, treated with Intensity Modulation Radiation Therapy and Three Dimensional Conformal Radiation Therapy.
Introduction: The aim of this study is to investigate the effect of respiratory motion during radiation therapy in patient with lung cancer and comparison of dosimetric parameters between Intensity modulation radiation therapy and three-dimensional conformal radiotherapy in lung cancer. Materials and Methods: Two CT scan was performred for each pati...
متن کاملSU-E-T-582: Assessment of Improved Critical Structure Sparing Using Biologically- Based Optimization for Volumetric Modulated Arc Therapy of Head and Neck Cancer.
PURPOSE To investigate the critical structure sparing achievable by biological optimization for modulated volumetric arc (VMAT) of head and neck (H&N) cancer. METHODS Ten H&N VMAT patients who were originally planned and treated with simultaneous integrated boost technique using dose-volume based optimization, were selected. For each patient, a new VMAT plan was generated using the generalize...
متن کاملMonitoring Sustainable Development Goals 3: Assessing the Readiness of Low- and Middle-Income Countries
Background The Millennium Development Goals (MDGs) availed opportunities for scaling up service coverage but called for stringent monitoring and evaluation (M&E;) focusing mainly on MDG related programs. The Sustainable Development Goals 3 (SDGs) and the universal health coverage (UHC) agenda present a broader scope and require more ...
متن کاملA nonstandard finite difference scheme for solving fractional-order model of HIV-1 infection of CD4^{+} t-cells
In this paper, we introduce fractional-order into a model of HIV-1 infection of CD4^+ T--cells. We study the effect of the changing the average number of viral particles $N$ with different sets of initial conditions on the dynamics of the presented model. The nonstandard finite difference (NSFD) scheme is implemented to study the dynamic behaviors in the fractional--order HIV-1 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 39 6Part18 شماره
صفحات -
تاریخ انتشار 2012